Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.973
Filtrar
1.
Circ Res ; 134(8): 1029-1045, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603473

RESUMO

There has been increased awareness of the linkage between environmental exposures and cardiovascular health and disease. Atrial fibrillation is the most common sustained cardiac arrhythmia, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Although numerous studies have explored the role of genetic and lifestyle factors in the development and progression of atrial fibrillation, the potential impact of environmental determinants on this prevalent condition has received comparatively less attention. This review aims to provide a comprehensive overview of the current evidence on environmental determinants of atrial fibrillation, encompassing factors such as air pollution, temperature, humidity, and other meteorologic conditions, noise pollution, greenspace, and the social environment. We discuss the existing evidence from epidemiological and mechanistic studies, critically evaluating the strengths and limitations of these investigations and the potential underlying biological mechanisms through which environmental exposures may affect atrial fibrillation risk. Furthermore, we address the potential implications of these findings for public health and clinical practice and identify knowledge gaps and future research directions in this emerging field.


Assuntos
Poluição do Ar , Fibrilação Atrial , Sistema Cardiovascular , Expossoma , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Exposição Ambiental/efeitos adversos
2.
Am J Respir Crit Care Med ; 209(8): 909-927, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619436

RESUMO

Background: An estimated 3 billion people, largely in low- and middle-income countries, rely on unclean fuels for cooking, heating, and lighting to meet household energy needs. The resulting exposure to household air pollution (HAP) is a leading cause of pneumonia, chronic lung disease, and other adverse health effects. In the last decade, randomized controlled trials of clean cooking interventions to reduce HAP have been conducted. We aim to provide guidance on how to interpret the findings of these trials and how they should inform policy makers and practitioners.Methods: We assembled a multidisciplinary working group of international researchers, public health practitioners, and policymakers with expertise in household air pollution from within academia, the American Thoracic Society, funders, nongovernmental organizations, and global organizations, including the World Bank and the World Health Organization. We performed a literature search, convened four sessions via web conference, and developed consensus conclusions and recommendations via the Delphi method.Results: The committee reached consensus on 14 conclusions and recommendations. Although some trials using cleaner-burning biomass stoves or cleaner-cooking fuels have reduced HAP exposure, the committee was divided (with 55% saying no and 45% saying yes) on whether the studied interventions improved measured health outcomes.Conclusions: HAP is associated with adverse health effects in observational studies. However, it remains unclear which household energy interventions reduce exposure, improve health, can be scaled, and are sustainable. Researchers should engage with policy makers and practitioners working to scale cleaner energy solutions to understand and address their information needs.


Assuntos
Poluição do Ar , Países em Desenvolvimento , Humanos , Sociedades , Biomassa , Consenso
3.
Huan Jing Ke Xue ; 45(5): 2525-2536, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629518

RESUMO

To evaluate the spatial and temporal distribution characteristics of ambient ozone (O3) in the Beijing-Tianjin-Hebei (BTH) Region, the land use regression (LUR) model and random forest (RF) model were used to simulate the ambient O3 concentration from 2015 to 2020. Meanwhile, all-cause, cardiovascular, and respiratory mortalities as well as economic losses attributed to O3 were also estimated. The results showed that upward trends with fluctuation were observed for ambient O3 concentration, mortalities, and economic losses attributable to O3 exposure in the BTH Region from 2015 to 2020. The areas with high O3 concentration and great changes were concentrated in the central and southwestern regions, whereas the concentration in the northern region was low, and the change degree was small. The spatial distribution of the mortalities was also consistent with the spatial distribution of O3 concentration. From 2015 to 2020, the economic losses regarding all-cause mortality and cardiovascular mortality increased in 13 cities of the BTH Region, whereas the economic losses of respiratory mortality decreased in 4 cities in the BTH Region. The results indicated that the priority areas for O3 control were not uniform. Specifically, Beijing, Tianjin, Hengshui, and Xingtai were vital areas for O3 pollution control in the BTH Region. Differentiated control measures should be adopted based on the characteristics of these target areas to decline O3 concentration and reduce health impacts and economic losses associated with O3 exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Pequim , Ozônio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Cidades , China
5.
Immunohorizons ; 8(4): 307-316, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625119

RESUMO

Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated ß-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.


Assuntos
Poluição do Ar , Araquidonato 15-Lipoxigenase , Emissões de Veículos , Macrófagos , Fagossomos , Poeira
6.
Physiol Rep ; 12(7): e16005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605426

RESUMO

In this review, we discuss some of the recent advances in our understanding of the physiology of the air pollution and exercise. The key areas covered include the effect of exercise intensity, the effects of pre-exposure to air pollution, acclimation to air pollution, and the utility of masks during exercise. Although higher intensity exercise leads to an increase in the inhaled dose of pollutants for a given distance traveled, the acute effects of (diesel exhaust) air pollution do not appear to be more pronounced. Second, exposure to air pollution outside of exercise bouts seems to have an effect on exercise response, although little research has examined this relationship. Third, humans appear to have an ability to acclimate to ground level ozone, but not other pollutants. And finally, masks may have beneficial effects on certain outcomes at low intensity exercise in pollution with significant levels of particles, but more study is required in realistic conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Emissões de Veículos , Exercício Físico
7.
Front Public Health ; 12: 1333811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605869

RESUMO

Background: In recent years, an increasing number of observational studies have reported the impact of air pollution on autoimmune diseases (ADs). However, no Mendelian randomization (MR) studies have been conducted to investigate the causal relationships. To enhance our understanding of causality, we examined the causal relationships between particulate matter (PM) and nitrogen oxides (NOx) and ADs. Methods: We utilized genome-wide association study (GWAS) data on PM and NOx from the UK Biobank in European and East Asian populations. We also extracted integrated GWAS data from the Finnish consortium and the Japanese Biobank for two-sample MR analysis. We employed inverse variance weighted (IVW) analysis to assess the causal relationship between PM and NOx exposure and ADs. Additionally, we conducted supplementary analyses using four methods, including IVW (fixed effects), weighted median, weighted mode, and simple mode, to further investigate this relationship. Results: In the European population, the results of MR analysis suggested a statistically significant association between PM2.5 and psoriasis only (OR = 3.86; 95% CI: 1.89-7.88; PIVW < 0.00625), while a potential association exists between PM2.5-10 and vitiligo (OR = 7.42; 95% CI: 1.02-53.94; PIVW < 0.05), as well as between PM2.5 and systemic lupus erythematosus (OR = 68.17; 95% CI: 2.17-2.1e+03; PIVW < 0.05). In East Asian populations, no causal relationship was found between air pollutants and the risk of systemic lupus erythematosus and rheumatoid arthritis (PIVW > 0.025). There was no pleiotropy in the results. Conclusion: Our results suggest a causal association between PM2.5 and psoriasis in European populations. With the help of air pollution prevention and control, the harmful progression of psoriasis may be slowed.


Assuntos
Poluição do Ar , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Autoimunes/etiologia , Doenças Autoimunes/genética , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Psoríase/etiologia , Psoríase/genética
8.
Front Public Health ; 12: 1347586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605881

RESUMO

Introduction: With the increase of urban population density, urban sanitation becomes more severe; urban sanitation has important influence on public health. Therefore, in order to realize the detection of public health in smart cities, the research will use cutting-edge scientific and technological methods to improve urban environmental health, so as to promote the realization of public health achievements. This study introduces public health detection and optimizationtechnologies for smart cities. Methods: Firstly, a data detection system for urban public health environment was established using sensors and intelligent multi-objective technology to evaluate the water quality, air quality, and noise level of the city. Then, an intelligent garbage management system based on Tensor-flow was constructed to achieve efficient garbage collection and treatment. Finally, an intelligent traffic management system was developed to monitor and regulate urban traffic flow. Results: The results of the simulation experiment demonstrated that the life data detection system was operationally stable, with a high success rate of 98%. Furthermore, its accuracy in detecting residents' living environment data was above 95%, the maximum relative error was only 0.0465, making it a reliable and efficient tool. The waste recycling system achieved a minimum accuracy of 83.6%, the highest accuracy rate was 95.3%, making it capable of sorting and recycling urban waste effectively. Additionally, the smart traffic management system led to a 20% reduction in traffic congestion rates, 20 tonnes less tailpipe emissions and an improvement in public health and well-being. Discussion: In summary, the plan proposed in this study aims to create a more comfortable, safe, and healthy urban public health environment, while providing theoretical support for environmental health management in smart cities.


Assuntos
Poluição do Ar , Saúde Pública , Humanos , Cidades , Poluição do Ar/análise , Meio Ambiente , Saneamento
9.
Environ Health ; 23(1): 36, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609898

RESUMO

BACKGROUND: Multifaceted SARS-CoV-2 interventions have modified exposure to air pollution and dynamics of respiratory diseases. Identifying the most vulnerable individuals requires effort to build a complete picture of the dynamic health effects of air pollution exposure, accounting for disparities across population subgroups. METHODS: We use generalized additive model to assess the likely changes in the hospitalisation and mortality rate as a result of exposure to PM2.5 and O3 over the course of COVID-19 pandemic. We further disaggregate the population into detailed age categories and illustrate a shifting age profile of high-risk population groups. Additionally, we apply multivariable logistic regression to integrate demographic, socioeconomic and climatic characteristics with the pollution-related excess risk. RESULTS: Overall, a total of 1,051,893 hospital admissions and 34,954 mortality for respiratory disease are recorded. The findings demonstrate a transition in the association between air pollutants and hospitalisation rates over time. For every 10 µg/m3 increase of PM2.5, the rate of hospital admission increased by 0.2% (95% CI: 0.1-0.7%) and 1.4% (1.0-1.7%) in the pre-pandemic and dynamic zero-COVID stage, respectively. Conversely, O3-related hospitalization rate would be increased by 0.7% (0.5-0.9%) in the pre-pandemic stage but lowered to 1.7% (1.5-1.9%) in the dynamic zero-COVID stage. Further assessment indicates a shift of high-risk people from children and young adolescents to the old, primarily the elevated hospitalization rates among the old people in Lianyungang (RR: 1.53, 95%CI: 1.46, 1.60) and Nantong (RR: 1.65, 95%CI: 1.57, 1.72) relative to those for children and young adolescents. Over the course of our study period, people with underlying diseases would have 26.5% (22.8-30.3%) and 12.7% (10.8-14.6%) higher odds of having longer hospitalisation and over 6 times higher odds of deaths after hospitalisation. CONCLUSIONS: Our estimates provide the first comprehensive evidence on the dynamic pollution-health associations throughout the pandemic. The results suggest that age and underlying diseases collectively determines the disparities of pollution-related health effect across population subgroups, underscoring the urgency to identifying the most vulnerable individuals to air pollution.


Assuntos
Poluição do Ar , Transtornos Respiratórios , Doenças Respiratórias , Adolescente , Criança , Humanos , Pandemias , Doenças Respiratórias/epidemiologia , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos
10.
Circulation ; 149(16): 1298-1314, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38620080

RESUMO

Urban environments contribute substantially to the rising burden of cardiometabolic diseases worldwide. Cities are complex adaptive systems that continually exchange resources, shaping exposures relevant to human health such as air pollution, noise, and chemical exposures. In addition, urban infrastructure and provisioning systems influence multiple domains of health risk, including behaviors, psychological stress, pollution, and nutrition through various pathways (eg, physical inactivity, air pollution, noise, heat stress, food systems, the availability of green space, and contaminant exposures). Beyond cardiometabolic health, city design may also affect climate change through energy and material consumption that share many of the same drivers with cardiometabolic diseases. Integrated spatial planning focusing on developing sustainable compact cities could simultaneously create heart-healthy and environmentally healthy city designs. This article reviews current evidence on the associations between the urban exposome (totality of exposures a person experiences, including environmental, occupational, lifestyle, social, and psychological factors) and cardiometabolic diseases within a systems science framework, and examines urban planning principles (eg, connectivity, density, diversity of land use, destination accessibility, and distance to transit). We highlight critical knowledge gaps regarding built-environment feature thresholds for optimizing cardiometabolic health outcomes. Last, we discuss emerging models and metrics to align urban development with the dual goals of mitigating cardiometabolic diseases while reducing climate change through cross-sector collaboration, governance, and community engagement. This review demonstrates that cities represent crucial settings for implementing policies and interventions to simultaneously tackle the global epidemics of cardiovascular disease and climate change.


Assuntos
Poluição do Ar , Saúde da População Urbana , Humanos , Cidades/epidemiologia , Poluição do Ar/efeitos adversos
11.
Science ; 384(6691): 33-34, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574150

RESUMO

A broader approach to assessing the burden of disease from air pollution is required.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Psicossociais da Doença , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Humanos
12.
Chemosphere ; 355: 141900, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579953

RESUMO

The COVID-19 pandemic during 2020-2023 has wrought adverse impacts on coastal and marine environments. This study conducts a comprehensive review of the collateral effects of COVID-19 on these ecosystems through literature review and bibliometric analysis. According to the output and citation analysis of these publications, researchers from the coastal countries in Asia, Europe, and America payed more attentions to this environmental issue than other continents. Specifically, India, China, and USA were the top three countries in the publications, with the proportion of 19.55%, 18.99%, and 12.01%, respectively. The COVID-19 pandemic significantly aggravated the plastic and microplastic pollution in coastal and marine environments by explosive production and unproper management of personal protective equipment (PPE). During the pandemic, the estimated mismanaged PPE waste ranged from 16.50 t/yr in Sweden to 250,371.39 t/yr in Indonesia. In addition, the PPE density ranged from 1.13 × 10-5 item/m2 to 2.79 item/m2 in the coastal regions worldwide, showing significant geographical variations. Besides, the emerging contaminants released from PPE into the coastal and marine environments cannot be neglected. The positive influence was that the COVID-19 lockdown worldwide reduced the release of air pollutants (e.g., fine particulate matter, NO2, CO, and SO2) and improved the air quality. The study also analyzed the relationships between sustainable development goals (SDGs) and the publications and revealed the dynamic changes of SDGs in different periods the COVID-19 pandemic. In conclusion, the air was cleaner due to the lockdown, but the coastal and marine contamination of plastic, microplastic, and emerging contaminants got worse during the COVID-19 pandemic. Last but not least, the study proposed four strategies to deal with the coastal and marine pollution caused by COVID-19, which were regular marine monitoring, performance of risk assessment, effective regulation of plastic wastes, and close international cooperation.


Assuntos
Poluição do Ar , COVID-19 , Humanos , COVID-19/epidemiologia , Microplásticos , Plásticos , Pandemias , Ecossistema , Monitoramento Ambiental , Controle de Doenças Transmissíveis , Poluição do Ar/análise
13.
Environ Health Perspect ; 132(4): 47001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567968

RESUMO

BACKGROUND: Epidemiological evidence suggests air pollution adversely affects cognition and increases the risk of Alzheimer's disease (AD), but little is known about the biological effects of fine particulate matter (PM2.5, particulate matter with aerodynamic diameter ≤2.5µm) on early predictors of future disease risk. OBJECTIVES: We investigated the association between 1-, 3-, and 5-y exposure to ambient and traffic-related PM2.5 and cerebrospinal fluid (CSF) biomarkers of AD. METHODS: We conducted a cross-sectional analysis using data from 1,113 cognitively healthy adults (45-75 y of age) from the Emory Healthy Brain Study in Georgia in the United States. CSF biomarker concentrations of Aß42, tTau, and pTau, were collected at enrollment (2016-2020) and analyzed with the Roche Elecsys system. Annual ambient and traffic-related residential PM2.5 concentrations were estimated at a 1-km and 250-m resolution, respectively, and computed for each participant's geocoded address, using three exposure time periods based on specimen collection date. Associations between PM2.5 and CSF biomarker concentrations, considering continuous and dichotomous (dichotomized at clinical cutoffs) outcomes, were estimated with multiple linear/logistic regression, respectively, controlling for potential confounders (age, gender, race, ethnicity, body mass index, and neighborhood socioeconomic status). RESULTS: Interquartile range (IQR; IQR=0.845) increases in 1-y [ß:-0.101; 95% confidence interval (CI): -0.18, -0.02] and 3-y (ß:-0.078; 95% CI: -0.15, -0.00) ambient PM2.5 exposures were negatively associated with Aß42 CSF concentrations. Associations between ambient PM2.5 and Aß42 were similar for 5-y estimates (ß:-0.076; 95% CI: -0.160, 0.005). Dichotomized CSF variables revealed similar associations between ambient PM2.5 and Aß42. Associations with traffic-related PM2.5 were similar but not significant. Associations between PM2.5 exposures and tTau, pTau tTau/Aß42, or pTau/Aß42 levels were mainly null. CONCLUSION: In our study, consistent trends were found between 1-y PM2.5 exposure and decreased CSF Aß42, which suggests an accumulation of amyloid plaques in the brain and an increased risk of developing AD. https://doi.org/10.1289/EHP13503.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença de Alzheimer , Adulto , Humanos , Estados Unidos , Material Particulado/análise , Poluentes Atmosféricos/análise , Doença de Alzheimer/epidemiologia , Estudos Transversais , Exposição Ambiental/análise , Poluição do Ar/análise , Biomarcadores/análise
16.
Environ Monit Assess ; 196(5): 418, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570428

RESUMO

The impact of partial and full COVID lockdowns in 2020 on vehicle miles traveled (VMT) in Kuwait was estimated using data extracted from the Directions API of Google Maps and a Python script running as a cronjob. This approach was validated by comparing the predictions based on the app to measuring traffic flows for 1 week across four road segments considered in this study. VMT during lockdown periods were compared to VMT for the same calendar weeks before the pandemic. NOx emissions were estimated based on VMT and were used to simulate the spatial patterns of NOx concentrations using an air quality model (AERMOD). Compared to pre-pandemic periods, VMT was reduced by up to 25.5% and 42.6% during the 2-week partial and full lockdown episodes, respectively. The largest reduction in the traffic flow rate occurred during the middle of these 2-week periods, when the traffic flow rate decreased by 35% and 49% during the partial and full lockdown periods, respectively. The AERMOD simulation results predicted a reduction in the average maximum concentration of emissions directly related to VMT across the region by up to 38%, with the maximum concentration shifting to less populous residential areas as a result of the lockdown.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Material Particulado/análise , Pandemias , Monitoramento Ambiental/métodos , Poluição do Ar/análise
17.
Environ Health Perspect ; 132(4): 47004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573328

RESUMO

BACKGROUND: Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES: This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO2) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO2 exposure. METHODS: Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO2 (n=128) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n=124). Postnatal-specific DNAm differences (n=125) were isolated, and their association with NO2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS: At birth (n=128), 18 regions of DNAm were associated with NO2, with several annotated to HOX genes. Some of these regions were specifically identified in males (n=73), but not females (n=55). The effect of prenatal NO2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION: Regional cord blood DNAm differences associated with prenatal NO2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.


Assuntos
Poluição do Ar , Metilação de DNA , Recém-Nascido , Lactente , Masculino , Feminino , Gravidez , Humanos , Estudos Prospectivos , Canadá/epidemiologia , Sangue Fetal
18.
Environ Monit Assess ; 196(5): 427, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573508

RESUMO

The "spatial pattern-wind environment-air pollution" within building clusters is closely interconnected, where different spatial pattern parameters may have varying degrees of impact on the wind environment and pollutant dispersion. Due to the complex spatial structure within industrial parks, this complexity may lead to the accumulation and retention of air pollutants within the parks. Therefore, to alleviate the air pollution situation in industrial parks in China and achieve the circular transformation and construction of parks, this study takes Hefei Circular Economy Demonstration Park as the research object. The microscale Fluent model in computational fluid dynamics (CFD) is used to finely simulate the wind flow field and the diffusion process of pollutants within the park. The study analyzes the triad relationship and influence mechanism of "spatial pattern-wind environment-air pollution" within the park and studies the influence of different spatial pattern parameters on the migration and diffusion of pollutants. The results show a significant negative correlation between the content of pollutants and wind speed inside the industrial park. The better the wind conditions, the higher the air quality. The spatial morphology parameters of the building complex are the main influences on the condition of its internal wind environment. Building coverage ratio and degree of enclosure have a significant negative correlation with wind conditions. Maintaining them near 0.23 and 0.37, respectively, is favorable to the quality of the surrounding environment. Moreover, the average height of the building is positively correlated with the wind environment condition. The rate of transport and dissipation of pollutants gradually increases as the average building height reaches 16 m. Therefore, a reasonable building planning strategy and arrangement layout can effectively improve the wind environment condition inside the park, thus alleviating the pollutant retention situation. The obtained results serve as a theoretical foundation for optimizing morphological structure design within urban industrial parks.


Assuntos
Poluição do Ar , Poluentes Ambientais , Hidrodinâmica , Vento , Monitoramento Ambiental
19.
Yale J Biol Med ; 97(1): 29-40, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559464

RESUMO

Maternal prenatal exposure to household air pollution (HAP) is a critical public health concern with potential long-term implications for child respiratory health. The objective of this study is to assess the level of association between prenatal household air pollution and child respiratory health, and to identify which HAP pollutants are associated with specific respiratory illnesses or symptoms and to what degree. Relevant studies were retrieved from PubMed databases up to April 27, 2010, and their reference lists were reviewed. Random effects models were applied to estimate summarized relative risks (RRs) and 95% confidence intervals (CIs). The analysis involved 11 studies comprising 387 767 mother-child pairs in total, assessing various respiratory health outcomes in children exposed to maternal prenatal HAP. Children with prenatal exposure to HAP pollutants exhibited a summary RR of 1.26 (95% CI=1.08-1.33) with moderate between-study heterogeneity (I²=49.22%) for developing respiratory illnesses. Specific associations were found between prenatal exposure to carbon monoxide (CO) (RR=1.11, 95% CI: 1.09-1.13), Nitrogen Oxides (NOx) (RR=1.46, 95% CI: 1.09-1.60), and particulate matter (PM) (RR=1.26, 95% CI: 1.2186-1.3152) and child respiratory illnesses (all had I² close to 0%, indicating no heterogeneity). Positive associations with child respiratory illnesses were also found with ultrafine particles (UFP), polycyclic aromatic hydrocarbons (PAH), and ozone (O3). However, no significant association was observed for prenatal exposure to sulfur dioxide (SO2). In summary, maternal prenatal exposure to HAP may contribute to a higher risk of child respiratory health issues, emphasizing the need for interventions to reduce this exposure during pregnancy. Targeted public health strategies such as improved ventilation, cleaner cooking technologies, and awareness campaigns should be implemented to minimize adverse respiratory effects on children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise
20.
Environ Monit Assess ; 196(5): 442, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602562

RESUMO

The Burabay State National Natural Park is a national park of the great natural and historical values located in the north of Kazakhstan, which has been exposed in recent years to significant anthropogenic impact. The moss biomonitoring was performed in the Borovoye resort community, an important tourist destination in the national park, to identify the level of air pollution. Mosses collected at 29 locations were subjected to neutron activation analysis to determine 36 elements and additionally to ICP-OES to detect the level of Cu and Pb. Factor analysis was applied to check if there are any associations between identified elements and to link them with possible emission sources. According to contamination factor and pollution load indices the investigated area belongs to three classes of pollution: unpolluted, suspected and moderate. Potential ecological risk index calculated for selected elements revealed harmless risk to human health. The level of element obtained in Burabay State National Natural Park was compared with the data available for other national parks.


Assuntos
Poluição do Ar , Briófitas , Humanos , Biomarcadores Ambientais , Parques Recreativos , Cazaquistão , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...